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A direct proof of Volterra’s principle is given by reducing the boundary value 
problem of homogeneous viscoelasticity to solving the corresponding elastic pro- 
blem and some operator equations. The conditions of applicability of the sym- 
bolic method are formulated as equivalence conditions between the realization 
of the viscoelastic operator function which arises from the elastic problem and 
the solutions of the operator equations. We note that the second procedure is 
more general and can be used in the problems of viscoelasticity whose solutions 
cannot be constructed by Volterra’s principle. 

Volterra’s principle [l - 51 is widely used for the construction of the solution 
of boundary value problems in linear homogeneous viscoelasticity. The basis 
for its applicability is the independence of the operations with respect to the 
coordinates and time in the complete fundamental system of quasi-static equa- 
tions of a viscoelastic body. As a result, the problem is divided into solving 
the ~s~nding boundary value problem of the elastic body and the determi- 
nation of the operator functions. The latter are obtained from the elastic solu- 
tion through the formal replacement of the mechanical moduli by the visco- 
elastic operators. 

However, the separation of the space and time operations in the equations of 
viscoelasticity is, by itself, not a sufficient criterion for the applicability of the 
operator-symbolic method, if only because the boundary conditions are not 
taken into account 

In connection with this, an investigation of the problem of the rational app- 
lication of Volterra’s principle is required. An attempt for the mathematical 
foundation of Volterra’s principle is contained in [6J. In the case of time-inde- 
pendent viscoelastic properties the identity between the first and second form 
of the correspondence principle has been established by the methods of opera- 
tional calculus p+J. 

The symbolic method is justified by the construction of an isomorphism be- 
tween the sets of functions of the viscoelasticity operators and the functions of 
a complex variable. The conditions of applicability of Volterra’s principle are 
determined by the ~sibi~~ of performing a Laplace transform in the equations 
and the boundary conditions of the viscoelasticity problem. 

1, Two rchemar for the construction of the tolutioar of the 
boundary value problem. We assume that a viscoelastic body occupies the 
domain S2, bounded by the surface S of the Euclidean space, 5 is a point of the space, 
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xi its coordinates, and t denotes time. We denote by u (z. t) the displacement 
vector, by ui its componenets, and by E~J (2, t)! (3if (x, t) the components of the 

strain and stress te~wlfs, respectively, in the viscoelostic body. The complete fundam- 
ental system of equations of the quasistatic problem of a viscoelastic body has the form 

Qij, j + ff = 0, 3fj = 3°fjkte;:1r l3ij = 
'12 C"i, 1 + u j,d (1.1) 

Here li (2, t) are the given body f%zes per unit of volume, 3&i is the tensor-oper- 
afor of anisotropic viscoelasticity, Eifkl are elastic constants, and a,j..l(t, z) is the 
heredity kernel. We remind that the indices after the comma denote differentiation 

with respect to the corresponding coordinates and repeated indices denote a summation 

from one to three. For the sake of simplicity we consider the boundary value problem 
of viscoelasticity in displacements. By eliminating the stresses fkom (1.1) we obtain 
the equations for the displacements 

3'ijkIUk,lj +b fi = 0 (-Ewx~<4 (1.3) 

Here we have made use of the symmetry of the tensor-operator 

Qqjkl = 3'jiki = 3’t*rk (1.4) 

We formulate the boundary condftions in the form 

Ui (3, t) = 0 (mzS,Odt<=) (1.3) 

Arbitrary, but sufficiently smooth boundary conditions are reduced to tk form (1.5) 
by introducing a twice continuously differentiable auxiliary function in the domain ft. 

Thus. the problem consists in finding the displacement vector 11 (5, t> which satisftes 

Eqs. (1.3) for each t E co, 00) inside the domain (Z E a) , and the conditions (1.5) 

on the boundary (z t S). 
The first scheme for the construction of the solution of the problem (1.3). (1.51, 

connected with Volterra’s principle, consists in solving first the efastic boundary value 

problem 

The time plays the part of a parameter. Assume that the solution of problem (1.6) has 

been found, i.e. an operator E-l has been found such that 

u = E-If (EEQ-i-S, O<t<c=) (1.7) 

and the relations (1.6) are satisfied. Obviously, this operator depends on the numerical 
parameters which occur in the problem (1.6). T.he tensor of the elastic constants Eijkl 
belongs to these in the first place, and possibly the time t , 

The equality (1.8) defines an abstract function of several numerical arguments 183. 
The derivation of the solution of the viscoelastic probkni (1.3). (1.5) consists in the 
realization (determination) of this function when the elastic constants Eijkl are repia- 
ted by the conesponding viscoelastic operators aQijki. The realization procedure con- 
sists in the formal expansion of the function (1.8) in an abstract Taylor series in the 
neighborhood of the numerical part of -the operators 3” ij#[ 
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where the symbol aijkl denotes differentiation with respect to the parameter Eijkl, and 

djjkrE-l = lim F(Elll~9e*‘Eijkl + hEjjkl""E~ss)-F (El,,,, **.Eijkl, -..Esssr) 

AEijkP AE ijkl 

and the limit is understood in the sense of the norm of the multiparametric space of 

operators generated by the operator E-l. By the power of the operator a* t$ktdijal one 
has to understand its repeated application. By virtue of the noncommutativl’ty of the 

operators. a* tjkl among themselves, one cannot give for the lb th degree of this oper- 

ator a contracted representation similar to the one which holds for numerical functions. 
Finally, the mixed derivative is a sequence of mixed derivatives of order k, of an abs- 
tract function with respect to the corresponding aggregate of numerical parameters[8L 

The second scheme for solving the boundary problem of viscoelasticity differs from 

the previous one in that the realization procedure is replaced by solving of the operator 

equations. We introduce two operators E and 3, by the expressions 

(1.11) 

After that the problem (1.3), (1.5) can be represented in vector form 

Eu-331u=f (ZEQ), u=o @ES, 0<t<m) (1.12) 

For the formation of the operator equation we introduce an auxiliary vector g (2, t) 

and we consider the elastic problem 

Eu-g (ZEQ), u=O @ES) (1.13) 

After solving this problem we obtain the displacement vector 

u = E’-lg (2 E s2 + 4 
(1.14) 

which satisfies the boundary condition of the initial problem (1.12). Now we select the 
vector g such that Eqs.(l. 12) should hold inside the domain. For this, it should satisfy 

the equation 
g - Atg = f PER Obt<w) (1.15) 

where At = 31 E-l is the product of the operators. The formal solution of Eq. (1.15) 

is represented by the Neumann iterative series m] 
OD 

g = (I - A,)-’ f = 2 Apf 
n=o 

The solution of the boundary value problem (1.12) takes the form 
OD 

u = 2 PA,nf = &-lf 

(1.16) 

(1.17) 
n=o 

Subsequently we shall elucidate the conditions under which the expansion (1.9). obtain- 
ed by Volterra’s scheme, is equivalent to the operator Vt-l, and we shall give the proof 
of this expansion by means of the representation (1.17). 
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Now the inverse operntar of the viscoelastic problem is represented by the product 

q-1 = E-f& C=) 

The proof of the equivalence of the expansion (1. s) 15th the operator Y,-t reduces to 
the verBcation of the commutatMty of the operators B-l and Bt 

E-lBt am BtE-’ (2.3) 
and the validity of the identity 

where, as before, the operator E is defined by the boundary value problem (1.13). 
Lemma 2.1. For the operator At we have tbe reptesntation 

JIM = 3*ijk$ijglEE-’ (2.5) 

where the operator airat E denotes the derivative of the operator E with respect to the 
parameter Ef jkl. 

Proof, Let CQ be the coordinate vector& Taking into account (l.ll), we obtain 
explicit representations for the operator of the elastic problem 

E =-OiEiJ& (‘=‘)k, tj (2.6) 

and for the operator ander consideration 

4 =-ei 3fJnl (E-‘~,-‘))k, rj (2.7) 

Differentiating (2.6) with respect to the parameter E&r t we have 

a ifkl E=-asjkI [e, EmnpQ(-‘-) zk m ] = -63. (+**jb ti L T G@ 

S~ZEFZ the ~peratot E is a lf~ f&~~rion of the paratt~~tt~ -Qjrct and, ~o~~~~~~~Y* by 

~i~~~~~~~o~, only those terms will be dfstinct frrrm Z;CITOS whose indices cofncide with 
the differentiation indices. Applying this to (2. ‘7). we obtain the required npmsentation 
(2.5). 

Lemma 2.2. on the set of vectors on which the operators E and 8-l are commu- 
tative, the operators &kr &’ and E-l are commutative. 

Pro o f. The operator E can be represented as a linear combination of ~~f~to~ 
4iirlE 

E = Eiikl aifkl E $3 

with caeffkients Eijktt among which, by virtue of the symmetry property (1.4), only 
36 are independent. Expressing f2,9) in teams of the independent coefficients e&z + we 

obtain E = eijkl itijrr E ~uot 

where only 36 out of 81 will be distinct fmm zero. These coefficients can be Written 
out, but hate this is not essential. Under the Conditions of commutativity and Linearity 
of the operators E and r1 we have 
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EE-1 - E-‘E = ei jkl (aijkl EE-’ - .!?-I ai jkI E) = 0 (2.11) 

Since rgjkl are independent, equality (2.11) means that for every vector from the men- 
tioned set. we have 

(‘ij, 1 EE 1--E-lQE)(...)=O (2.12) 

i.e. the operators ~-1 and @jjkt E are commutative. 
Theorem 2.1. If the COnditiOnS of Lemma 2.2 hold and if the operators ZI*igkl, 

E and E-l are commutative, the identity (2.4) holds. 
Pro o f _ For a proof of identity (2,4) it is necessary to show that 

E (3i*jr, i$ jCr)n E-’ = (- f)*n! (3t,, &I EE-a)* (2.13) 

i. e. the general terms of the series (2.1) and (2.4) are identical. We accomplish this 
by induction. Making use of the fact that the differen~a~on rule of abstract functions 
with numerical arguments is simiIar 181 to the n&s of ordinary differentiation, we ob- 
tain 

S1JXI ai jkI (EE-‘) = $,%I ‘ii,t EE-’ + 3;.jx3x1 E8ijp.t E-1 = 0 (2.14) 

Here we have made use of the fact that the operators E and E-1 are inverses of each 
other. By assumption, the operators b.,jk, and V are commutative, therefore 

ES;,, ai,kl .!?‘I = - 3&, aifkI EE-1 (2.15) 

This equality proves (2,13) for n = 1 L We assume now that the identity (k 13) hoIds for 
n = N and we prove it for n = N + i. Making use of the assumed commutativity of 
the operators S*ijkrr E: and E-l, we write the differentiation rule (2.14) in terms of the 
operator 3’1332 ifijkr: 

(S& aijkr) @E-‘1 = E (3ljkl a$jkl) ii’-’ v!- E-l (S1;kl aijkr) E (2.16) 

By straightforward verification we can see that for the powers of the operator 3&$jkJ, 

acting on a product, the abstract anaIogue of Leibnitz’ formula holds: 

(3rjlti ijkr a )Ntv+z (EE-1) = B (a& aij,* f+’ E+ + 

+ (N-t 1) P&1 aijkt)E (91r(nw amnpP)NE-l=O (2.17) 

The ~mai~ng terms vanish because of the equalities 

(S&r a&nE=o (n=2&...,) (2.18) 
which follow from the linearity of the operator E, as a function of the parameters E<jkr. 
We transform the last term of (2.17) in the following way: 

(N i- ff (S&r aijkl E) (E-1E) (S&,w amnpp fN E-X = 

= (N + 1) (St,, aijkl EET E (S&,, amnpp ) N E-l (2.19) 

Since for n = A’ the identity (2.13) is assumed to be true, we obtain from (2.17) and 
(2.19) 

E (St,, 8ijkl)N+1 E-l = (- ~~+l (N + f)! (3ijkl aijkt EE-++l (2.20) 

Together with (2.15). the equatity (2,2(l) proves the identity (2,13) and thus theorem 
2.1 is proved. 
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8. The proof Of VOftWr&*t ptl~~iph. Let Stand Y~be some onc- 
poramem Banach spaces of vectors with norms If- - -11~ and 11. m *I/y , rcspectfvety_ We 
will say that f (5, g) E XT (Q X f0, a)), if for each fixed t E [O, T] the veotor 
Z (5, t) G Xt (6a f is), and in addition it is continuous with respect to t in the sense 
of the norm of this space, i.e. 

/I f (5, t’) - f (2, t) /lx -z 0 for 1’ - t (3.1) 

From condftion fblf it follows that the norm is a oontinuons function of the parameter 
t. In addition, it oan bc always considered a noble functfoa of this parameter 

II f (x7 f’) I& > II f (r, t1 I& for t’ > t, z E Q + s (3.2) 

We asum also that YTcXT, i. c. the space YT is embedded in the space XT and 
the incqttalitics 

~f~=~c~lf~~, ~f,~l~~~G~~fl~~, l~f,~~ll~~~~j~f~ (3.3) 

hold, which arc charactnristic for the embedding of spaces p] with additive norms. 
The coastants C, Cg, Cij do not depend on t. 

WC consider the elastic problem (1.13). (1.14). We assume that this problem is 
uniquely solvabb’on the set of vcetors ,g (2, t) E XT and the inveme operator E-l 
is a born&cd opcratot from the space XT into the space YT 

II~-%U,~J%3I, (3. ‘k) 

The oonstant &I is independent of the parameter t. The operator E-l mrps the space 
XT onto a part of the space Yr., We denote it by Y;l and we wfll call ft the subspace 
of the solutions of the elastic problem. Obviously, this is a set of vectors belonging to 
the space YT and satisfying in some sense the equations of the elastic n&Scrn and the 
boundary conditions. 

Lemma 3.1. On the set of vectors tt E Yk (Q X lo, w )) the operators E 
and atrkl % arc bon&cd opnrators with volucs in the space XT (Ld X !u, 00)). 

The proof folkws from the inequalities (3.3) and the rcpesintation (2.6). For example, 
for the aperater 6 WC have the chain of acmes 

I,EnIlx 45 E ij/rc li”,,lj~xG~ Eijk{C,,j ll”UY=mllu~iY (3.5) 
ix1 i-1 

Sinee Yi c Y, and the space Y, is embedded in the space X,, we conclude that 
the operators E and Fr arc sirnu~~co~~ bounded on the s&space Yi. In addition, 
bcitg invcrscs to each other, they are commutative on this subspace. Then, from the 
boundcdncss of the optrotor+ 8 OR Yk and from the inequalztics (3.5) we obtain the 
existence of the norm 11 E Ilx. By straightforward verification we can see that in the 
sense of this norm the o~rtar E is dfffcrcutiable with rcspcct to the p;tramc@J E{jklr 

and 

‘ijFilE I+-ei f"')k,,j, 
q&, E=O, n = 2,3, . . . (3.6) 

From bmma 2.2 we obtain that OR the subspace YG the operators L:‘, k”-‘. ‘tijf;, E are 
oommutativc, 

WC pmeced now to the investigation of the properties of the viseoclastio probkm. 
Lemma 3.2. If the tensor Zitjk, (t, z) is continuow and bounded in the norm of 
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the space XT (Q x 10, cm)), then the operator Bf is bounded in this space. 

Proof. For the operator At we have the following estimate: 

2 

(3.5) 

Here we have made use of the inequalities (3.2). (3.3) (3.4) and we have introduced 
the bounded fun&ion: 

K (rl r)=$ c,,j I13ijkl ft3 ‘1 I/X (X8) 
i=l 

In addition, for every vector f E XT the vector A tf is continuous with respect to r 
in the norm X,. Indeed, 

II 4 f - 

By virtue of the continuity of 3<jhr (t, ‘I) and the boundedness of the operator At , from 
(3.9) we obtain 

[jA,‘f-AA,fIIX+O when t’--,t, fEX, (3.10) 

which is equivalent to the required continuity. Since IT acts in the space XT, ih power 

A: acts in the same mace and we have the estimate 

II A: f II= Q M” j K,..., 0, 7) dt II f Hx 0) (3.11) 

0 

where Kn_l (t, 7) is the ( R - l )-th iterate of the kernel K (1, ‘c). Starting from (3. ‘7), 

inequalfty (3.11) can be easily proved by induction. 
As a result we obtain for the norm of the operator El* 

UB,]~< i UA,*llXd i -I- 5 M” j K,_I(tt y)dT (3.i2) 

n=o n=1 0 0 

The series 2 ~&-I (1, r) is convergent [lo] and its sum Rr (t, T) is the resolvent of 

the Volterra?&ator I - MK*, and thus, Bt represents a bounded operator in the norm 
of the space XT. The continuity with respect to the parameter t of the operator By 
follows from the uniform convergence of the series (3.12) with respect to t and from 
the continuity of the operator At 

N 

II 4, - B, 11~ e: 2 II AtI” - ~4,~ Ilx i- II r,pN Ilx + II rtN llx < 8 (3.13) 

n=o 

since for a sufficiently large index IV the remainder of the series (3.12) can be made 
arbitrarily small independent of t (Ilr~ljT < E / 3), and the finite sum tends to zero for 
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t’ -, t. Here e > 0 is an arbitrary small quantity. The lemma is proved. 
Theorem 3.1. If the inverse operator E-l of the elastic boundary value problem 

is an analytic function of the elastic characteristics and does not depend on I, then the 
formal construction of the inverse operator V,-i corresponding to the viscoelastic prob- 
lem with respect to Volterra’s principle is always possible and is equivalent to the direct 

solution. 
Proof. We assume, as before, that the operator E-1 acts as a bounded operator 

from the space X, into the space Y,. Then, there exists a subspace of solutions of the 
elastic problem Yi c Yr, on which the commutativity of the operators E, azjkrE* Es'. 
holds (Lemmas 2.2 and 3.11. The operator 8, acts in x, (lemma 3.2X Since we have 

the embeddlngs YG c Y, c X,, one can affirm that the operator Bt acts also in the 
space Y;. Similarly, the operators .9ijkl under the assumptions of Lemma 3.2, act in 

XT and the more so in the subspace Yg . Thus, the set of vectors on which the basic 
operaton are commutative is the subspace of solutions of the elastic pa&em. By the 
assumption of the theorem, the operator E- 1, and consequently the operator E too, do 
not depend on time, i.e. they are pure coordinate operators. We conclude from here 
that on the subspace Y+ the assumptions of Lemma 2.2 and Theorem 2.1 hold. Thus, 

on the set of solutions of the elastic problem the identity (2.4) holds. The latter means 

that the formal Taylor expansion represents a bounded operator. whose properties are 
identical with the properties of the operator B, (lemma 3.2). The operators E-1 and 

Br are commutative in the space XY,. This follows from the commutatlvity of the 
operators ~1 and At, which can be easily established on the basis of representation 

(2.5). the commutativity of the operators aijrrE and E” in Yi and the independence 

of E-1 from I 
‘4 t E-1 = 3: 

tjkl ‘ijkl EE-‘E-‘= 3Jjrl E--'c~,~~~ EE-'= E-L+ (3.14) 

From all this it follows that the inverse operator Vt-l of the viscoelastic problem in 

the space XT admits two equivalent representations 

(3,;,, ai jk l )” E-I- ; (3$, aifrr EE-‘1” E-l (3.15) 
n=o 

The first one corresponds to the application of Volterra’s scheme and the second one to 
the direct solving of the viscoelastic problem. The values of the operator Vt’l belong 

to the space YT. In addition, for the solution of the visooelastlc problem we have the 
estimate t 

II U l/y = il vtwl f Ily < M /I B, f 11~ G .M \ 1 f J R, (t, 7) dr j I) f ilx. (3.16) 
0 

Theorem 3. 2. If the inverse operator E-1 of the elastic problem depends on time, 
then the inverse operator I”, -I of the viscoelastic problem has a unique representation 

which follows from its direct solving. The formal application of Volterra’s principle 
reduces to a nonidentical operator. 

The proof follows from the fact that in the case when the operator E-1 depends on t 7 

the necessary conditions for the equivalence of the two schemes for solving the visco - 

elastic problem (Sect2) are violated, In addition, the conditions of Theorem (2.1). 

which are necessary for the existence of the identity (2.4). are violated. Indeed, assume 
that the identity (2.4) holds. Then, the identities (2.13) hold, and consequently (2.15) 
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holds. Multiplying the latter by the operator E-1 on the left and then by-E on the right, 
we obtain 

Subtracting this from the same identity (2.15), we obtain 

(E3i~~~ - 3~~r E) aij*, E-1 + (3~~l E-’ - E-‘3,~~~) aij,,, E 110 (3.18) 

Since 
‘ijklE_’ = - E-IE-1 aijr, E (3.19) 

and the operator dijkr E is not identically xero, from (3,181 we obtain 

(E3;,, - 3iTiklE) E-r - (3&r E-” - E-r S&E = 0 f3.m 

Hence it follows that 
ES& - 9&l E = 0, 3&r E-l - E-33& = 0 (3.21) 

i.e. the operators E and E-1 commute with the operators 8*dkt. The obtained conrra- 
diction proves the theorem. The proof for the representation of the inverse operator of 
the viscoelastic problem is obtained only by its direct solving and it is given by the 
series (1.172 

4. Applicrtlonr, A further concretization of the formulation of the boundary 
value problem of viscoelasticity leads to the necessity of considering it in specific fun- 
ction spaces. We consider two widesvd approaches. 

The investigation of smooth solutions (the classical approach) is carried out appropr- 
iately in the H6lder spaces C”‘“+” (61) (see [Sl). For the boundary value problem of vis- 
coelasticity in terms of displacements such an approach is given in [llJ, In the case of 
a regular domain 66 .under the ~ndi~onof positive definiteness of the tensor Efjkt and 
continuity of the tensor&j&r (t, a). for each vector f (z, 1) E CF (a X [O, m)) there 

x+a exists a unique vector u (r, t)E C T ( U X IO, 00)) satisfying the equations and the 
boundary conditions (1.12) of the viscoelastic problem. Selecting for the spaces XT 
and YT the spaces C‘F and C?$” , respectively. (CT is a Banach space), with the 
usual p] norms il.l} c1 and 11+11 s+at we can verify that all the assumptions hold. 

As a result we obtain 
C o r o 11 a r y 1. Under the assumptions of Theorem 3_ 1, the smooth solutions of she 

viscoelastic problem can be always obtained by the formal application of Volterra’s 
principle. 

Corollary 2. If the inverse operator of the elastic boundary value problem dep- 
ends on time, then for the construction of the smooth solutions of the corresponding 
viscoelastic problem, Volterra’s principle fs not applicable. They can be obtained by 
direct solution using the second scheme (Sect. 2). 

An attempt to weaken the conditions on the right-hand sides of the differential 
equations and the boundary values of the v~~~s~ci~ problem, leads to the necess- 
ity of introducing generalized solutions [9). In this connectlon the fundamental equa- 
tions are satisfied in the weak (integral) sense, while the derivatives with respect to 
the coordinates are understood to be generalized derivatives. The existence and uniqu- 
eness of the generalized (weak) solution of the boundary value problem of vfscoeksticity 
in terms of displacements have been proved in [ 121, moreover, if f e &,, then P E 
E Wsl. Here Lz is the space of square summable functions and W,l is Sobolev’s space 



V.G.Qromov 

P-i. Making wie of the deflnitlon of the norms in these spaces and also of the embedding 
theorem fsl, we can see that the spaces X, and YT can be identified with the spaces 

Lc and w.2 , respectively. 
Hence we obtains 

C o r a 11 a r y 3. If the inverse operator of the elastic problem, regarded in the weak 
sense, satlsfles the cotrlitions of Theorem 3,1, then the gertzralized solution of the 
wrrespondlng visc~ebsti~ problem can be obtained by Volterrs’s principle. 

C or0 llary 4, Under the condftions of Theorem 3.2, the construction of thegen- 
erallzed solutions of the vlscoelastlc problem is possible only by using the second scheme 
regarded ia the weak sense* Thus, the fundamental criterion for the pra@ical use of 
Volterra*s principle is the dependence or the independence of time of the inverse oper- 
ator of tbe corresponding elastfc boundary value problem. Even in the case of the sep- 
aration of the operations with respect to coordinates and rime in the equatinns~ the in- 
verse operator may turn out to be a function of time, at the expense of the fact that the 
boundary oondftlons are formulated on moving surfaces. As examples we have numerous 
PpobEt~ of vlsooelastlcity witn moving sum, annlfillatlrtg (ablating) r&acts and so 
on. The procedure of solving such problems using the secoixl soheme allows the use of 
electronic computers with efflclciency. 

In corm&.ts&~~ we note rhat the obtained results are quelltative$ valid in the case of 
tk second and the tblrd ~~~~1 boundary value problem of~~~l~* 
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Equations of motion for nematic liquid-crystal media in a magnetic field and 

also the equations of thermal conductivity are obtained. Together with the con- 

dition of continuity and the equation of state, these relationships determine the 

fields of nine quantities which characterize the nematic fluid: densities, pressures, 

temperatures, basis vectors of the local axis of anisotropy, rates of collective 
rotations of molecules near their “long” axes, and vectors of translational velo- 
city. Initial conditions and boundary conditions are formulated. Special cases 

are examined: equilibrium of the medium in a homogeneous magnetic and tem- 

perature field, disinclinations, orientational boundary layer, and also the flow 
in a ilat capillary in a magnetic field and the drag of fluid by a rotating magn- 
etic field. Based on obtained results, an explanation is given for a number of 
effects which have been discovered experimentally earlier. 

Liquid crystals occupy on the thermodynamic scale of states an intermediate 
(mesophase) position between anisotropic crystals and isotropic liquids. Two 
fundamental varieties of mesophases exist: the smectic and the nematic. In the 

liquid crystal medium of the smectic type the one-dimensional long-range co- 

ordination structure is preserved. The molecules are organized in regularly spa- 
ced parallel monolayers. In the medium of the nematic type the long-range 

order is completely absent in the spatial arrangement of molecules, just as in 

the ordinary liquid. However, in contrast to a liquid and in similarity to a solid 

crystal the long-range order of orientation for the “long” molecular axes is pre- 

served. The orientational order is characterized in each point of the medium by 
the axis of mean molecular orientation. This axis is simultaneously the local 

axis of symmeuy of the medium. 
In their mechanical properties the nematic media are quite close to liquids. 

Experiments show [I. 23 that the behavior of nematic liquids in a force field, 

a temperature field, a magnetic field, and an electrical field has a number of 
anomalies (anisotropy of viscosity, scale effect, orientation in hydrodynamic 
flow, drag of the medium by a rotating magnetic field, and others. ) 

The peculiar combination of mechanical properties makes liquid crystal media 
interesting objects for investigation from the point of view of continuum mechan- 
ics. At the present time the hydrostatic theory p - 91 is the most developed. In 
papers [lo - 121 linear hydrostatics is examined with consideration of thermal 
conductivity and effects of rotational viscosity. The hydrodynamic theory which 
takes into account elastic and thermal effects in a magnetic field is just being 


