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A direct proof of Volterra’s principle is given by reducing the boundary value
problem of homogeneous viscoelasticity to solving the cotresponding elastic pro-
blem and some operator equations, The conditions of applicability of the sym-
bolic method are formulated as equivalence conditions between the realization
of the viscoelastic operator function which arises from the elastic problem and
the solutions of the operator equations, We note that the second procedure is
more general and can be used in the problems of viscoelasticity whose solutions
cannot be constructed by Volterra's principle,

Volterra's principle {1 - 5] is widely used for the construction of the solution
of boundary value problems in linear homogeneous viscoelasticity, The basis
for its applicability is the independence of the operations with respect to the
coordinates and tirne in the complete fundamental system of quasi-static equa-
tions of a viscoelastic body. As a result, the problem is divided into solving
the corresponding boundary value problem of the elastic body and the determi-
nation of the operator functions, The latter are obtained from the elastic solu-
tion through the formal replacement of the mechanical moduli by the visco -
elastic operators,

However, the separation of the space and time operations in the equations of
viscoelasticity is, by itself, not a sufficient criterion for the applicability of the
operator-symbolic method, if only because the boundary conditions are not
taken into account,

In connection with this, an investigation of the problem of the rational app-
lication of Volterra's principle is required, An attempt for the mathematical
foundation of Volterra’s principle is contained in [6]. In the case of time~inde~
pendent viscoelastic properties the identity between the first and second form
of the correspondence principle has been established by the methods of opera-
tional calculus {7].

The symbolic method is justified by the construction of an isomorphism be-
tween the sets of functions of the viscoelasticity operators and the functions of
a complex variable, The conditions of applicability of Volterra's principle are
determined by the possibility of performing a Laplace transform in the equations
and the boundary conditions of the viscoelasticity problem,

1, Two schemes for the construction of the solutions of the
boundary value problem, We assume that a viscoelastic body occupies the
domain §), bounded by the surface § of the Euclidean space, £ is a point of the space,
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Z; its coordinates, and ¢ denotes time, We denote by u (x, ) the displacement
vector, by u; its componenets, and bye;; (z, ?). 0;; (z, ) the components of the -
strain and stress tensors, respectively, in the viscoelastic body, The complete fundam-
ental system of equations of the quasistatic problem of a viscoelastic body has the form

Gij, j T f%—'O “901,1{'!3 3% €i; =1/2(u1,1+u1,,) (1'1)

i = Eijir — *ijir = By — 5'9;”:1 b (- (1.2)

Here f; (z, t) are the given body forces per unit of volume, 3,,,” is the tensor-oper~
ator of anisotropic viscoelasticity, E 1 are elastic constants, and 3;j.(t, ) is the
heredity kernel, We remind that the indices after the comma denote differentiation
with respect to the corresponding coordinates and repeated indices denote a summation
from one to three, For the sake of simplicity we consider the boundary value problem
of viscoelasticity in displacements, By eliminating the stzesses from (1.1) we obtain
the equations for the displacements

P, i+ =0 (e 0<i< ) (1.3)
Here we have made use of the symmetry of thé tensor-operator
3"'“-“ = '9°J'ik£ = Sgijli: (1'4)
We formulate the boundary conditions in the form
u;(z,t)=20 (e S, 0Lt L x) (1.9

Arbitrary, but sufficiently smooth boundary conditions are reduced to the form (1. 5)
by introducing a twice continuously differentiable auxiliary function in the domain Q.
Thus, the problem consists in finding the displacement vector u (z, ¢) which satisfies
Egs, (1.3) for each ¢ & [0, co) inside the domain (z & Q) , and the conditions (1. 5)
on the boundary (z & §).

The first scheme for the construction of the solution of the problem (1, 3), (1.5),
connected with Volterra‘s principle, consists in solving first the elastic boundary value
problem

Ejuei;;+=0 e, =0 &5, 0<t<x) (1.8)

The time plays the part of a parameter, Assume that the solution of problem (1.6) has
been found, i.e, an operator E~! has been found such that
u=Ef (tEQ+ S, 0<t< o)

and the relations (1, 6) are satisfied, Obviously, this operator depends on the numerical
parameters which occur in the problem (1.8). The tensor of the elastic constants Eyj
belongs to these in the first place, and possibly the time 7 ,

E-' = F (Eyyyy Eqyze-- Egsssy 2) (1.8)
The equality (1, 8) defines an abstract function of several numerical arguments [8],
The derivation of the solution of the viscoelastic problem (1. 3), (1. 5) consists in the
realization (determination) of this function when the elastic constants E 1jki are repla-
ced by the corresponding viscoelastic operators 3°; ;x;- The realization procedure con-
sists in the formal expansion of the function (1.8) in an abstract Taylor series in the
neighborhood of the numerical part of the operators 3°; jxi

1.h
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F (301111- 3°1122 te 3°aaam t) = 2 (_1) (3 i:klaukz)"E t (1-9)

n=()

where the symbol 0Oisxi denotes differentiation with respect to the parameter E;jy;, and
8i;0Et = lim FEyyy o Eigri +BE sy o+ Bgggg) = F(Ey oo By gy
AEj, 0 AE 5
and the limit is understood in the sense of the norm of the multiparametric space of
operators generated by the operator £-1. By the power of the operator 3% 4,0, sx; one
has to understand its repeated application, By virtue of the noncommutativity ot the
operators. 3% jx1 among themselves, one cannot give for the #th degree of this oper-
ator a contracted representation similar to the one which holds for numerical functions,
Finally, the mixed derivative is a sequence of mixed derivatives of order k' of an abs-
tract function with respect to the corresponding aggregate of numerical parameters[8].
The second scheme for solving the boundary problem of viscoelasticity differs from
the previous one in that the realization procedure is replaced by solving of the operator
equations, We introduce two operators £ and 3, by the expressions

(Ew); = — Eyjquy, 15 (Fru); = — 3* Uz, 1 (1.11)
After that the problem (1, 3), (1, 5) can be represented in vector form
Eu—-9u=1f g9, u=0 @ges 0<t<x) (112)

For the formation of the operator equation we introduce an auxiliary vector g (z, t)
and we consider the elastic problem
Eu=g (g9, u=0 @es (1.13)
After solving this problem we obtain the displacement vector
u=Elg xeQ+S)
which satisfies the boundary condition of the initial problem (1, 12), Now we select the

vector g such that Eqs, (1, 12) should hold inside the domain, For this, it should satisfy
the equation

(1.14)

g—A4g=1 (€9 0<t<x) (1.15)

where A, = 3; E-1 is the product of the operators, The formal solution of Eq, (1,15)
is represented by the Neumann jterative series [8]

g=(I—A4) =D A%t (1.16)
n=0
The solution of the boundary value problem (1, 12) takes the form

©0
u= D B4 =V} (1.17)
n=0
Subsequently we shall elucidate the conditions under which the expansion (1, 9), obtain-
ed by Volterra's scheme, is equivalent to the operator V-, and we shall give the proof
of this expansion by means of the representation (1,17),
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2., The equivalence of the two schemes, We continue for the present
the formal examination of the problem, It is convenient to introduce the operator

By= D A" 2.1)
N==0
Now the inverse operator of the viscoelastic problem is represented by the product
V= E1B, (2.2)

The proof of the equivalence of the expansion (1. 9) With the operator ¥;~! reduces to
the verification of the commutativity of the operators E-! and B,

E-'B, = B,E-! (2.3)
and the validity of the identity
o0 n »
By = 2 '—““'{-:3} E (3"l E7 (2.4)
=}

where, as before, the operator E is defined by the boundary value problem (1,13),
Lemma 2,1, For the operator A; we have the representation
Ay = %00 EET (2.5)
where the operator §;;; £ denotes the derivative of the operator E with respect to the
parameter £ x;.
Proof, Let e, be the coordinate vectors, Taking into account (1,11), we obtain
explicit representations for the operator of the elastic problem

== ey 1 (2.6)
-and for the operator under consideration
Ay=—e Iy (E7(-- N, 13 2.7
Differentiating (2, 6) with respect to the parameter Eijk1, we have
Vit E = —np (€ Epppg (), qnl = — &, ¢V, 15 (2.8)

since the operator £ is a linear function of the parameters £jiz and, consequently, by
differentiation, only those terms will be distinct from zeros whose indices coincide with .
the differentiation indices, Applying this to (2,7), we obtain the required representation

(2. 5)
Lemma 2.2. On the set of vectors on which the operators £ and E~" are commu-

tative, the operators 9,5 £ and E-! are commutative,
Proof, The operator £ can be represented as a linear combination of operators

Gij &

E=FEp 0 E {2.9)
with coefficients Eijxr, among which, by virtue of the symmetry property (1,4), only
36 are independent, Expressing (2. 9) in terms of the independent coefficients giju;, we
obtain

E=g 0 £ (2.10)

where only 36 out of 81 will be distinct from zero, These coefficients can be- written
out, but here this is not essential, Under the conditions of commutativity and linearity

of the operators £ and E™' we have
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EE-1 — E-E = &3, 0,5y EE™ — E718,, E)=0 (2.11)

Since g;5,; are independent, equality (2,11) means that for every vector from the men-
tioned set, we have
@O0 EEV— E1,, E) (--) =0 (2.12)

i.e, the operators £ and 8;;,, E are commutative,

Theorem 2,1, If the conditions of Lemma 2,2 hold and if the operators 3%,
E and E-1 are commutative, the identity (2,4) holds,

Proof., For a proof of identity (2, 4) it is necessary to show that

E O Oy)” E7 = (— )01 (95 Piint BETY (2.43)

i, e, the general terms of the series (2,1) and (2, 4) are identical, We accomplish this
by induction, Making use of the fact that the differentiation rule of abstract functions
with numerical arguments is similar [8] to the rules of ordinary differentiation, we ob-
tain

9t Oimy (BE™) =973 Oijmy EET' 4+ 9i59 Ed,jy ET1= 0 (2.44)

Here we have made use of the fact that the operators £ and £-! are inverses of each
other, By assumption, the operators 9%, and £ are commutative, therefore

Eyq Oipqy B =— iy 95y EE (2.15)
This equality proves (2,13) for » = 1. We assume now that the identity (2, 13) holds for

n = N and we prove it for n = N -- 1. Making use of the assumed commutativity of
the operators 9*;j;;, £ and £, we write the differentiation rule (2,14) in terms of the

operator 3%j; Gk
(it Fyge) (EE™) =E (95 85 £+ B %k Oy B (2.16)
By straightforward verification we can see that for the powers of the operator 9;jk,ai,~k,,
acting on a product, the abstract analogue of Leibnitz’ formula holds:
& :Jkl Bk YWHEEY=E (3:.7*1 Bismr P E +
+ (N -+ 1) (9:.7'kl aukl)E (smnpq mnP!l) E-=0 (2'”)
The remaining terms vanish because of the equalities
OGim )" E=0 (r=23,...,) (2.18)

which follow from the linearity of the operator Z, as a function of the parameters £;jy;.
We transform the last term of (2,17) in the following way:

(N +1) (35 awm E) (E7'E) (9 pmnpq Omnpg) E1=
= (N + 1) (93 Pkt EE™) E (O pnpg Ompq)” E7? (219)
Since for » = N the identity (2,13) is assumed to be true, we obtain from (2,17) and

(2.19)
* g\ IV
E g Oyt Bl = (= OV N + 1) B Oyp BEDHVH (2.20)

Together with (2,15), the equality (2,20) proves the identity (2,13) and thus theorem
2.1 is proved,
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3, The proof of Volterra's principle, Let XTand Y1 be some one-
parameter Banach spaces of vectors with norms ||+ - *[|x and ||- - -|l¥ , respectively, We
will say that T (z,2) & X7 (Q X [0, o)), if for each fixed ¢ = [0, T'] the vector
flz, ) = X, (Q + S), and in addition it is continuous with respect to ¢ in the sense
of the norm of this space, i,e,

[P, ) —F&z )]y —0 for v—¢ 3.

From condition (3,1) it follows that the norm is a continuous function of the ‘paranmter
t. In addition, it can be always considered a nondecreasing function of this parameter

1T Ojg>lt@ ]y for vr>t 00 s (3.2)

We assume also that Y o~ X, i.e. the space Y7 is embedded in the space Xt and
the inequalities

e <Cltly, I <Cilfly, 1 ule <Cislily (3:3)

hold, which are characteristic for the embedding of spaces [9] with additive norms,
The constants C, C;, C;;do not depend on t.

We consider the elastic problem (1,13), (1,14), We assume that this problem is
uniquely solvable on the set of vectors g (2, ) & X and the inverse operator E-?
is a bounded operatot from the space X r into the space Y ¢

1Egl, < M|gl, (3.4

The constant [}/ is independent of the parameter ¢. The operator £-! maps the space
X1 onto a part of the space Y, We denote it by Y7 and we will call it the subspace
of the solutions of the elastic problem, Obviously, this is a set of vectors belonging to
the space Y r and satisfying in some sense the equations of the elastic problem and the
boundary conditions,

Lemma 3,1, On the setof vectors = Y7 (Q X [0, )) the operators £
and ,;,, E are bounded operators with values in the space X1 (8 X U, )).

The proof follows from the inequalities (3, 3) and the representation (2, 6), For example,
for the operator £ we have the chain of inequalities

3 3

| Eujg <2| Eijer I8, 15]x S 2 E; Crij fuly = m“uﬂ}., (3.9}
fz==] =1
Since Yr C Y1 and the space Y is embedded in the space X, we conclude that
the operators £ and £ are simultaneously bounded on the subspace Y. . In addition,
being inverses to each other, they are commutative on this subspace, Then, from the
boundedness of the operator- £ on YT and from the inequalities (3. 5) we obtain the
existence of the norm || E ||, . By suaightforward verification we can see that in the
sense of this norm the operator E is differentiable with respect to the parameter Eg,
and
agj}uE:-e; (.“)k,!jv ag'kl E=1, n=23... Lg.ﬁ}

From Lemma 2,2 we obtain that on the subspace Y} the operators £, £, d;;,, F are
commutative,
We proceed now to the investigation of the properties of the viscoelastic problem.,
Lemma 3.2, If the tensor ;5 (¢, 1) is continuous and bounded in the norm of
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the space X7 (Q X |0, o0)), then the operator B; is bounded in this space,
Proof, For the operator A; we have the following estimate:

H
b4, nx<j 13y & Dlx 10y, EE- fydv <
1 3
<Mj SV ChuilBijmr @ 1:)|]X|]fuxdt_.M§ K, vyde|fig (1) 3.7)

0 i=1
Here we have made use of the inequalities (3,2), (3, 3), (3.4) and we have introduced

the bounded function: s

Kt =2 CpyilB ¢ Dlx (3.8)
i=1

In addition, for every vector f € X the vector 4:f is continuous with respect to ;
in the norm X;. Indeed,

b f— Afie <[ —1] 14, flx+

3
tl
Lom S e (‘:, ‘r)—9”“ (¢, Tl Cor; deiilx 3.9)

i=]

o~

By virtue of the continuity of 3;;;; (¢, 1) and the boundedness of the operator 4, , from

(3. 9) we obtain .
|4/ §— Af|x—0 when t' -t f&€ Xy (3.10)

which is equivalent to the required continuity, Since ir acts in the space X, its power
A7 acts in the same space and we have the estimate

b7ty <M [ Koy DTl Eiy @) (3.41)
0

where Kn_; (, 7) is the ( n — 1)-th iterate of the kernel K (¢, 7). Starting from (3, 7),
inequality (3,11) can be easily proved by induction,
As a result we obtain for the norm of the operator By

IB,lx < 2 14, g <+ 2 len_l(t ) dr 3.42)

n=1
©

The series 2 M"K, 1 (t,7) is convergent [10] and its sum Ru (4, 7) is the resolvent of

n=1
the Volterra operator / — M K*, and thus, B; represents a bounded operator in the norm
of the space X7. The continuity with respect to the parameter ¢ of the operator B,
follows from the uniform convergence of the series (3,12) with respect to ¢ and from

the continuity of the operator 4;
N

1B —Blx < X 14" — A Mx +1rN g +irN iz <e (3.13)
n=0
since for a sufficiently large index ¥ the remainder of the series (3,12) can be made
arbitrarily small independent of ¢ (|jr}’ lly < &/ 3), and the finite sum tends to zero for
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t' — t.Here ¢ > 0 is an arbitrary smalil quantity, The lemma is proved,

Theorem 3,1, If the inverse operator £-! of the elastic boundary value problem
is an analytic function of the elastic characteristics and does not depend on 7, then the
formal construction of the inverse operator V,-! corresponding to the viscoelastic prob-
lem with respect to Volterra‘s principle is always possible and is equivalent to the direct
solution,

Proof, We assume, as before, that the operator E7! acts as a bounded operator
from the space X7 into the space Y- Then, there exists a subspace of solutions of the
elastic problem Y7, C Y. on which the commutativity of the operators £, dijx1E, E™"
holds (Lemmas 2,2 and 3,1), The operator £, acts in X (Lemma 3,2), Since we have
the embeddings Y, C Y, C X, one can affirm that the operator B; acts also in the
space Y 7. Similarly, the operators 91;}:1 under the assumptions of Lemma 3,2, act in
XT and the more so in the subspace Y Thus, the set of vectors on which the basic
operators are commutative is the subspace of solutions of the elastic problem, By the
assumption of the theorem, the operator £~!, and consequently the operator £ too, do
not depend on time, i,e, they are pure coordinate operators, We conclude from here
that on the subspace Y% the assumptions of Lemma 2,2 and Theorem 2,1 hold, Thus,
on the set of solutions of the elastic problem the identity (2, 4) holds, The latter means
that the formal Taylor expansion represents a bounded operator, whose properties are
identical with the properties of the operator 4, (Lemma 3,2). The operators £ and
8¢ are commutative in the space X1. This follows from the commutativity of the
operators g~! and 4;, which can be easily established on the basis of representation
(2.5), the commutativity of the operators ;£ and £7* in Y, and the independence
of E™ from ¢

ALV =3Yy 0, EETET =030, E710,,, EE-'=E"14, (3.14)

From all this it follows that the inverse operator V;! of the viscoelastic problem in
the space X, admits two equivalent representations

20

- i '1 n * n —_ e o
b= 3 S O 0 B = ) Gl Oy EEYET (3.15)
n=g n=0)
The first one corresponds to the application of Volterra's scheme and the second one to
the direct solving of the viscoelastic problem, The values of the operator V™! belong
to the space Y. In addition, for the solution of the viscoelastic problem we have the
estimate t
luly =1V, 8y <M |B L <M [t +j Ry (2, t)dr) £l (3.16)
o

Theorem 3,2, If the inverse operator £-1 of the elastic problem deperds on time,
then the inverse operator V? of the viscoelastic problem has a unique representation
which follows from its direct solving, The formal application of Volterra's principle
reduces to a nonidentical operator,

The proof follows from the fact that in the case when the operator £~! depends on ¢
the necessary conditions for the equivalence of the two schemes for solving the visco -
elastic problem (Sect, 2) are violated, In addition, the conditions of Theorem (2, 1),
which are necessary for the existence of tne identity (2,4), are violated, Indeed, assume
that the identity (2.4) holds, Then, the identities (2,13) hold, and consequently (2.15)
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holds, Multiplying the latter by the operator £-1 on the left and then by<E on the right,

we obtain " .
Oy EByjy £+ E71 85y 0,y E=0 (3.47)

Subtracting this from the same identity (2,15), we obtain

(B3, — 9;;.“ E)d,;, E + (agm B E-leg';u) 8 E=0 (3.18)

Since

6i’.“E‘1 = — E-1E 31.].“ E {3.19)

and the operator 8;5;; Eis not identically zero, from (3,18) we obtain

(E9i — IigiE) B3 — (83 B — E7* 9B =0 (3.20)
Hence it follows that
ESiq—9imE=0, 95 E1—E-9,=0 (3.21)

i.e, the operators £ and E™! commute with the operators 9%j;;. The obtained contra-
diction proves the theorem, The proof for the representation of the inverse operator of
the viscoelastic problem is obtained only by its direct solving and it is given by the
series (1,17},

é, Applications, A further concretization of the formulation of the boundary
value problem of viscoelasticity leads to the necessity of considering it in specific fun-
ction spaces, We consider two widespread approaches,

The investigation of smooth solutions (the classical approach) is carried out appropr-
iately in the H¥lder spaces C™** (Q) (see [9]). For the boundary value problem of vis-
coelasticity in terms of displacements such an approach is given in [11}. In the case of
a regular domain @ ,under the conditionof positive definiteness of the tensor Eyj;; and
continuity of the tensor ;51 (¢, 1), for each vector f (z, t) € C7 (€ X [0, o)) there
exists a unique vector u (z, )€ C%* (2 X [0, ) satisfying the equations and the
boundary conditions (1,12) of the viscoelastic problem, Selecting for the spaces Xr
and YT the spaces CF and (%%, respectively, (C"7° is a Banach space), with the
usual [9] norms ||-|| « and [I-]| 2+, we can verify that all the assumptions hold,

As a result we obtain

Corollary 1, Under the assumptions of Theorem 3.1, the smooth solutions of the
viscoelastic problem can be always obtained by the formal application of Volterra's
principle,

Corollary 2, If the inverse operator of the elastic boundary value problem dep-
ends on time, then for the construction of the smooth solutions of the corresponding
viscoelastic problem, Volterra’s principle is not applicable, They can be obtained by
direct solution using the second scheme (Sect, 2),

An attempt to weaken the conditions on the right-hand sides of the differential
equations and the boundary values of the viscoelasticity problem, leads to the necess-
ity of introducing generalized solutions [9], In this connection the fundamental equa~
tions are satisfied in the weak (integral) sense, while the derivatives with respect to
the coordinates are understood to be generalized derivatives, The existence and uniqu-
eness of the generalized (weak) solution of the boundary value problem of viscoelasticity
in terms of displacements have been proved in [12], moreover, if { &L, thenu €
€ W,l.Here L, is the space of square summable functions and Wy! is Sobolev's space
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[91. Making use of the definition of the norms in these spaces and also of the embedding
theorem [9], we can see that the spaces X.. and Y. can be identified with the spaces

L. and W,', respectively,
Hence we obtain:

Corollary 3, If the inverse operator of the elastic problem, regarded in the weak
sense, satisfies the conditions of Theorem 3,1, then the generalized solution of the
corresponding viscoelastic problem can be obtained by Volterra's principle,

Corollary 4. Under the conditions of Theorem 3,2, the construction of the gen-
eralized solutions of the viscoelastic problem is possible only by using the second scheme
regarded in the weak sense, Thus, the fundamental criterion for the practical use of
Volterra's principle is the dependence or the independence of time of the inverse oper-
ator of the corresponding elastic boundary value problem, Even in the case of the sep~
aration of the operations with respect to coordinates and time in the equations, the in-
verse operator may turn out to be a function of time, at the expense of the fact that the.
boundary conditions are formulated on moving surfaces, As examples we have numerous
problems of viscoelasticity witn moving supports, annihilating (ablating) surfaces and so
on, The procedure of solving such problems using the second scheme allows the use of
electronic computers with efficiciency,

In conclusion we note that the obtained results are qualitatively valid in the case of
the second and the third fundamental boundary value problem of viscoelasticity.
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Equations of motion for nematic liquid-crystal media in a magnetic field and

also the equations of thermal conductivity are obtained, Together with the con-
dition of continuity and the equation of state, these relationships determine the
fields of nine quantities which characterize the nematic fluid: densities, pressures,
temperatures, basis vectors of the local axis of anisotropy, rates of collective
rotations of molecules near their "long" axes, and vectors of translational velo-
city, Initial conditions and boundary conditions are formulated, Special cases
are examined: equilibrium of the medium in a homogeneous magnetic and tem-
perature field, disinclinations, orientational boundary layer, and also the flow
in a flat capillary in a magnetic field and the drag of fluid by a rotating magn-
etic field, Based on obtained results, an explanation is given for a number of
effects which have been discovered experimentally earlier,

Liquid crystals occupy on the thermodynamic scale of states an intermediate
(mesophase) position between anisotropic crystals and isowopic liquids, Two
fundamental varieties of mesophases exist; the smectic and the nematic, In the
liquid crystal medium of the smectic type the one-dimensional long-range co-
ordination structure is preserved, The molecules are organized in regularly spa-
ced parallel monolayers, In the medium of the nematic type the long-range
order is completely absent in the spatial arrangement of molecules, just as in
the ordinary liquid. However, in contrast to a liquid and in similarity to a solid
crystal the long-range order of orientation for the "long" molecular axes is pre~
served, The orientational order is characterized in each point of the medium by
the axis of mean molecular orientation, This axis is simultaneously the local
axis of symmetry of the medium,

In their mechanical properties the nematic media are quite close to liquids,
Experiments show [1, 2] that the behavior of nematic liquids in a force field,

a temperature field, a magnetic field, and an electrical field has a number of
anomalies (anisotropy of viscosity, scale effect, orientation in hydrodynamic
flow, drag of the medium by a rotating magnetic field, and others, )

The peculiar combination of mechanical properties makes liquid crystal media
interesting objects for investigation from the point of view of continuum mechan-
ics, At the present time the hydrostatic theory {3 -~ 9] is the most developed, In
papers [10 - 12] linear hydrostatics is examined with consideration of thermal
conductivity and effects of rotational viscosity, The hydrodynamic theory which
takes into account elastic and thermal effects in a magnetic field is just being



